christianermann.dev-hugo

The Hugo source for my website
git clone git://git.christianermann.dev/christianermann.dev-hugo
Log | Files | Refs | Submodules | README

view-matrix.md (3753B)


      1 ---
      2 title: "Deriving the View Matrix"
      3 date: 2021-11-21T13:34:08-08:00
      4 draft: false
      5 tags: ["Graphics", "Matrices", "OpenGL"]
      6 math: true
      7 ---
      8 
      9 In computer graphics, the view matrix is used to transform points from
     10 world space into camera space. Below is an explanation of how to derive this
     11 matrix.
     12 
     13 Let $V$ be the view matrix.
     14 If $\vec{r}$, $\vec{u}$, and $\vec{f}$ denote the right, up, and forward
     15 vectors of the camera and $\vec{p}$ is the camera's position, $V$ should
     16 satisfy the following properties:
     17 $$
     18     \begin{matrix}
     19         V_{1*} \times
     20         \begin{bmatrix}
     21             r_{x} \\\
     22             r_{y} \\\
     23             r_{z} \\\
     24             0
     25         \end{bmatrix}
     26         =
     27         \begin{bmatrix}
     28             1 \\\
     29             0 \\\
     30             0 \\\
     31             0
     32         \end{bmatrix},&
     33         V_{2*} \times
     34         \begin{bmatrix}
     35             u_{x} \\\
     36             u_{y} \\\
     37             u_{z} \\\
     38             0
     39         \end{bmatrix}
     40         =
     41         \begin{bmatrix}
     42             0 \\\
     43             1 \\\
     44             0 \\\
     45             0
     46         \end{bmatrix},&
     47         V_{3*} \times
     48         \begin{bmatrix}
     49             f_{x} \\\
     50             f_{y} \\\
     51             f_{z} \\\
     52             0
     53         \end{bmatrix}
     54         =
     55         \begin{bmatrix}
     56             0 \\\
     57             0 \\\
     58             1 \\\
     59             0
     60         \end{bmatrix},&
     61         V_{4*} \times
     62         \begin{bmatrix}
     63             p_{x} \\\
     64             p_{y} \\\
     65             p_{z} \\\
     66             1
     67         \end{bmatrix}
     68         =
     69         \begin{bmatrix}
     70             0 \\\
     71             0 \\\
     72             0 \\\
     73             1
     74         \end{bmatrix}
     75     \end{matrix}
     76 $$
     77 In words, the view matrix should translate the camera to the origin and rotate
     78 it to align with the $\vec{x}$, $\vec{y}$, and $\vec{z}$ axes.
     79 
     80 This can be expressed more concisely as the product of two matrices:
     81 $$
     82     V \times
     83     \begin{bmatrix}
     84         r_{x} & u_{x} & f_{x} & p_{x} \\\
     85         r_{y} & u_{y} & f_{y} & p_{y} \\\
     86         r_{z} & u_{z} & f_{z} & p_{z} \\\
     87         0     & 0     & 0     & 1
     88     \end{bmatrix}
     89     =
     90     \begin{bmatrix}
     91         1 & 0 & 0 & 0 \\\
     92         0 & 1 & 0 & 0 \\\
     93         0 & 0 & 1 & 0 \\\
     94         0 & 0 & 0 & 1
     95     \end{bmatrix}
     96 $$
     97 
     98 To make this equation easier to solve, we can split the matrix containing our
     99 camera parameters into the product of a translation matrix $T$ and a rotation
    100 matrix $R$:
    101 $$
    102     V \times (T \times R) = I
    103 $$
    104 where
    105 $$
    106     \begin{matrix}
    107         T =
    108         \begin{bmatrix}
    109             1 & 0 & 0 & p_{x} \\\
    110             0 & 1 & 0 & p_{y} \\\
    111             0 & 0 & 1 & p_{z} \\\
    112             0 & 0 & 0 & 1
    113         \end{bmatrix},&
    114         R =
    115         \begin{bmatrix}
    116             r_{x} & u_{x} & f_{x} & 0 \\\
    117             r_{y} & u_{y} & f_{y} & 0 \\\
    118             r_{z} & u_{z} & f_{z} & 0 \\\
    119             0     & 0     & 0     & 1
    120         \end{bmatrix}
    121     \end{matrix}
    122 $$
    123 
    124 Solving for $V$ reveals that $V=R^{-1} \times T^{-1}$:
    125 $$
    126     V =
    127     \begin{bmatrix}
    128         r_{x} & r_{y} & r_{z} & 0 \\\
    129         u_{x} & u_{y} & u_{z} & 0 \\\
    130         f_{x} & f_{y} & f_{z} & 0 \\\
    131         0     & 0     & 0     & 1
    132     \end{bmatrix}
    133     \times
    134     \begin{bmatrix}
    135         1 & 0 & 0 & -p_{x} \\\
    136         0 & 1 & 0 & -p_{y} \\\
    137         0 & 0 & 1 & -p_{z} \\\
    138         0 & 0 & 0 & 1
    139     \end{bmatrix}
    140 $$
    141 
    142 And with some minor simplification,
    143 $$
    144     V
    145     =
    146     \begin{bmatrix}
    147         r_{x} & r_{y} & r_{z} & -(\vec{r} \cdot \vec{p}) \\\
    148         u_{x} & u_{y} & u_{z} & -(\vec{u} \cdot \vec{p}) \\\
    149         f_{x} & f_{y} & f_{z} & -(\vec{f} \cdot \vec{p}) \\\
    150         0     & 0     & 0     & 1
    151     \end{bmatrix}
    152 $$
    153 
    154 When we're ready to render our scene, we can apply $V$ to each vertex $\vec{q}$
    155 by calculating
    156 $$
    157     V \times \vec{q}
    158 $$
    159 in our vertex shader.
    160